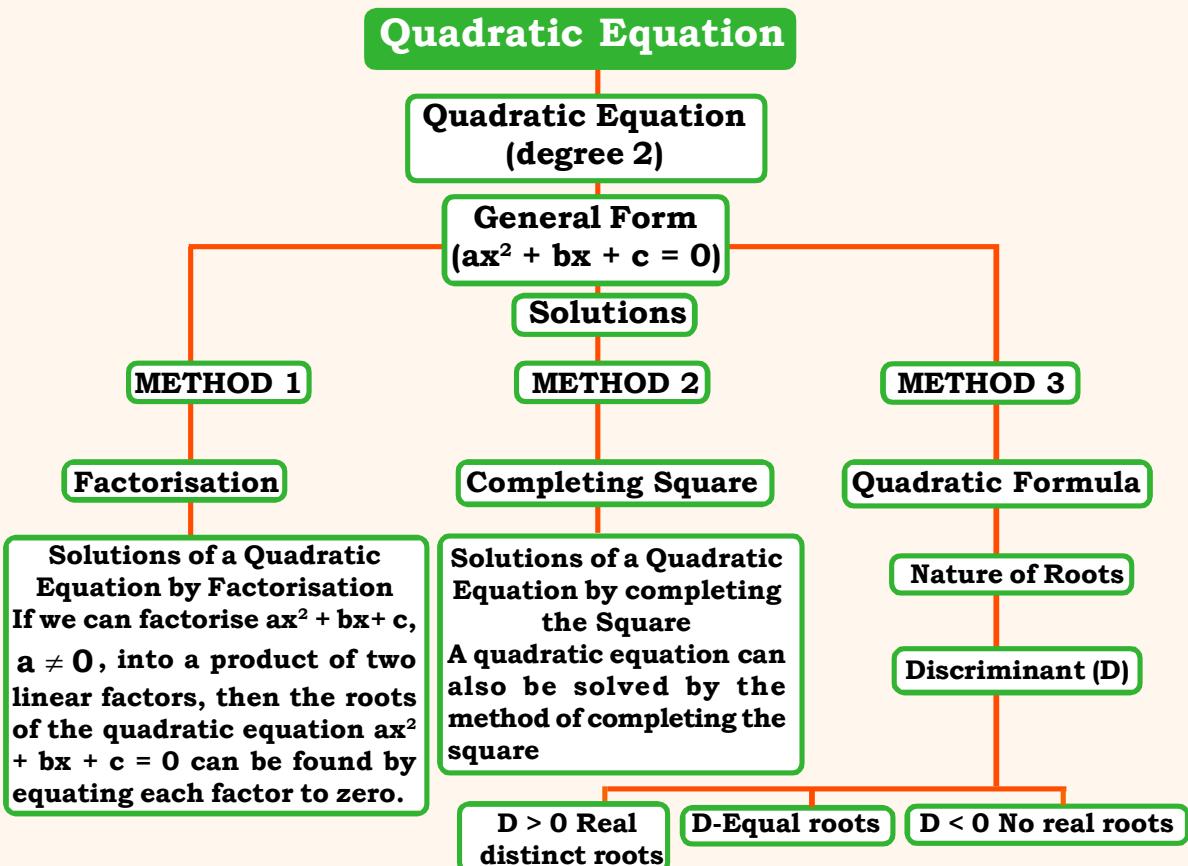


QUADRATIC EXPRESSIONS

Sridhara Acharya was an Indian mathematician who lived around the 10th century. He wrote several treatises on the two major fields of Indian mathematics, pati-ganita and bija-ganita. He is famous for his writings on the practical applications of Algebra, and he was one who gave a formula for solving quadratic equations for the first time.

CONCEPT MAP



CONCEPT 1.1

Quadratic Expression:

If $a \neq 0$, b, c are real (or) complex numbers then $ax^2 + bx + c$ is called a quadratic expression in x

Ex: $x^2 - 7x + 12$, $x^2 + 8x + 12$, $x^2 - (1 + 2i)x + 38$.

- A complex number ' α ' is said to be a 'zero' of quadratic expression $ax^2 + bx + c$, if $a\alpha^2 + b\alpha + c = 0$

Ex: 3 is a zero of $x^2 - 5x + 6$

Quadratic Equation: If $a \neq 0$, b, c are real (or) complex numbers then $ax^2 + bx + c = 0$ is called a quadratic equation in x .

Ex: $x^2 + 5x + 6 = 0$, $x^2 + x + 1 = 0$

Identity:

A relation which is true for every value of the variable is called an identity

Quadratic Identity:

$ax^2 + bx + c = 0$ will be an identity (or can have more than two solutions) if $a = 0$, $b = 0$ and $c = 0$.

Root of a Quadratic Equation:

If $a\alpha^2 + b\alpha + c = 0$ then α is a root or solution of the quadratic equation $ax^2 + bx + c = 0$.

- The roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ and its discriminant is $\Delta = b^2 - 4ac$.

Ex: The roots of $3x^2 - 5x - 12 = 0$ are

Sol: $x = \frac{5 \pm \sqrt{25 - 4(3)(-12)}}{2 \times 3}$ i.e. $x = -\frac{4}{3}, 3$ or (using factorization method)

$$3x^2 - 9x + 4x - 12 = 0 \Rightarrow 3x(x - 3) + 4(x - 3) = 0 \Rightarrow (3x + 4)(x - 3) = 0$$

$$\Rightarrow x = -\frac{4}{3}, 3$$

- If α and β are the roots of $ax^2 + bx + c = 0$ then ,

$$\text{i)} \quad \alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a} \quad \text{ii)} \quad |\alpha - \beta| = \frac{\sqrt{b^2 - 4ac}}{|a|}$$

$$\text{iii) } \alpha^2 + \beta^2 = \frac{b^2 - 2ac}{a^2}$$

$$\text{iv) } \alpha^3 + \beta^3 = \frac{3abc - b^3}{a^3}$$

- If α and β are the roots of $ax^2 + bx + c = 0$ then the quadratic expression $ax^2 + bx + c = a(x - \alpha)(x - \beta)$
- The quadratic equation whose roots are α, β is given by $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

Note:

Quadratic equation cannot have more than two roots.

Ex: The quadratic equation whose roots are $1 + \sqrt{2}, 1 - \sqrt{2}$ is

$$\text{Sol: } x^2 - (1 + \sqrt{2} + 1 - \sqrt{2})x + (1 + \sqrt{2})(1 - \sqrt{2}) = 0 \quad \text{i.e. } x^2 - 2x + (-1) = 0$$

$$x^2 - 2x - 1 = 0 \quad (\text{or}) \quad x = 1 + \sqrt{2}$$

$$x - 1 = \sqrt{2} \quad (x - 1)^2 = 2 \Rightarrow x^2 - 2x - 1 = 0$$

Ex: If $i^2 = -1$, then the quadratic equation whose roots are $\frac{3+i\sqrt{5}}{2}$ is

$$\text{Sol: } x^2 - \left(\frac{3+i\sqrt{5}}{2} + \frac{3-i\sqrt{5}}{2} \right)x + \left(\frac{3+i\sqrt{5}}{2} \cdot \frac{3-i\sqrt{5}}{2} \right) = 0$$

$$x^2 - 3x + \frac{7}{2} = 0 \Rightarrow 2x^2 - 6x + 7 = 0 \quad \text{or} \quad x = \frac{3+i\sqrt{5}}{2} \Rightarrow (2x - 3)^2 = -5$$

$$\Rightarrow 2x^2 - 6x + 7 = 0$$

Ex: If α, β are the roots of $ax^2 + bx + c = 0$ and $c \neq 0$ then the value of

$$\frac{1}{(a\alpha + b)^2} + \frac{1}{(a\beta + b)^2} \quad \text{in terms of } a, b, c \text{ is}$$

Sol: $\because \alpha$ is a root of $ax^2 + bx + c = 0$

$$\Rightarrow a\alpha^2 + b\alpha = -c \Rightarrow a\alpha + b = \frac{-c}{\alpha}, \text{ similarly } a\beta + b = \frac{-c}{\beta}$$

$$\therefore \frac{1}{(a\alpha + b)^2} + \frac{1}{(a\beta + b)^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{c^2} = \frac{b^2 - 2ac}{a^2 c^2}$$

MARK YOUR ANSWERS WITH PEN ONLY. Time Taken in Minutes

1 A B C D

2 A B C D

3 A B C D

4 A B C D

5 A B C D

6 (A) (B) (C) (D)

7 A B C D

8 (A) (B) (C) (D)

9 (A) (B) (C) (D)

10 (A) (B) (C) (D)

CONCEPT 1.2

Nature of the Roots of the Equation

$$ax^2 + bx + c = 0 :$$

- If a, b, c are real and
 - $\Delta > 0$, then the roots are real and distinct
 - $\Delta = 0$, then the roots are real and equal
 - $\Delta < 0$, then the roots are non-real conjugate complex numbers i.e., $\alpha \pm i\beta$
- If a, b, c are rational and
 - $\Delta > 0$ and is a perfect square then the roots are rational and distinct.
 - $\Delta > 0$ and is not a perfect square then the roots are conjugate surds i.e., $\alpha \pm \sqrt{\beta} . (\beta \neq 0)$
 - $\Delta = 0$, then the roots are equal & rational
 - $\Delta < 0$, then the roots are non-real conjugate complex numbers i.e., $\alpha \pm i\beta$

Ex: The nature of the roots of $x^2 + x - 1 = 0$ is

Sol: $\Delta = (1)^2 - 4(1)(-1) = 5$ is not a perfect square.

\Rightarrow roots are irrational and more over conjugate

Ex: The nature of the roots of $2x^2 + x + 6 = 0$ is

Sol: $\Delta = 1 - 4(2)(6) = -47 < 0$

\Rightarrow roots are imaginary more over conjugate complex numbers

Ex: If the roots of the equation $x^2 - 15 - m(2x - 8) = 0$ are equal then the value of m is

Sol: $x^2 - 15 - m(2x - 8) = 0$

$$x^2 - 2mx + 8m - 15 = 0$$

$$\Delta = 0 \Rightarrow (-2m)^2 - 4 \times 1 \times (8m - 15) = 0$$

$$m^2 - 8m + 15 = 0$$

$$(m - 3)(m - 5) = 0 \quad m = 3; \quad m = 5$$

Quadratic Expressions

Ex: If a, b, c are real, the roots of $(a^2 + b^2)x^2 - 2b(a + c)x + (b^2 + c^2) = 0$ are real and equal, then the expression in which a, b, c lies is

Sol: $a^2x^2 + b^2x^2 - 2abx - 2bcx + b^2 + c^2 = 0$

$$a^2x^2 - 2abx + b^2 + b^2x^2 - 2bcx + c^2 = 0$$

$$(ax - b)^2 + (bx - c)^2 = 0$$

$$ax - b = 0; bx - c = 0; x = \frac{b}{a}; x = \frac{c}{b}$$

$$\frac{b}{a} = \frac{c}{b} \Rightarrow b^2 = ac, \therefore a, b, c \text{ are in G.P}$$

Nature of the roots of two Quadratic Equations:

If Δ_1 and Δ_2 are the discriminants of two quadratic equations $P(x) = 0$ and $Q(x) = 0$, such that

- If $\Delta_1 + \Delta_2 \geq 0$ then there will be at least two real roots for the equation $P(x) = 0$ or $Q(x) = 0$.
- If $\Delta_1 + \Delta_2 < 0$, then there will be at least two imaginary roots for the equation $P(x) = 0$ or $Q(x) = 0$.
- If $\Delta_1 \cdot \Delta_2 < 0$, then the equation $P(x) \cdot Q(x) = 0$ will have two real roots and two imaginary roots.
- If $\Delta_1 \cdot \Delta_2 > 0$, then the equation $P(x) \cdot Q(x) = 0$ has either four real roots or no real roots.
- If $\Delta_1 \cdot \Delta_2 = 0$ such that $\Delta_1 > 0$ and $\Delta_2 = 0$ or $\Delta_1 = 0$ and $\Delta_2 > 0$ then the equation $P(x) \cdot Q(x) = 0$ will have two equal roots and two distinct roots.
- If $\Delta_1 \cdot \Delta_2 = 0$ where $\Delta_1 < 0$ and $\Delta_2 = 0$ or $\Delta_1 = 0$ and $\Delta_2 < 0$ then the equation $P(x) \cdot Q(x) = 0$ will have two equal real roots.
- If $\Delta_1 \Delta_2 = 0$ such that $\Delta_1 = 0$ and $\Delta_2 = 0$ then the equation $P(x) \cdot Q(x) = 0$ will have two pairs of equal roots.

CLASSROOM DISCUSSION QUESTIONS

CDQ
1.2

- The discriminant of a quadratic equation $ax^2 + bx + c = 0$ is given by:
 - $b^2 + 4ac$
 - $b^2 - 4ac$
 - $b^2 / 4ac$
 - $2b - 4ac$
- If the discriminant (Δ) > 0 , then the quadratic equation has:
 - Real and equal roots
 - Real and distinct roots
 - No real roots
 - Complex roots
- If the discriminant (Δ) $= 0$, then the quadratic equation has:
 - Real and distinct roots
 - Real and equal roots
 - Imaginary roots
 - Surd roots
- If $\Delta < 0$, then the roots of the quadratic equation are:
 - Real and distinct
 - Real and equal
 - Non-real complex conjugates
 - Rational numbers
- The roots of $2x^2 + x + 3 = 0$ are:
 - Real and distinct
 - Real and equal
 - Non-real complex
 - Rational
- If $\Delta > 0$ but not a perfect square, then the roots of the equation are:
 - Rational and distinct
 - Real and distinct but irrational
 - Complex
 - Equal
- For what values of b will the equation $x^2 + bx + 1 = 0$ have equal roots?
 - $b = 1$
 - $b = -2$
 - $b = 2$ or -2
 - $b = \pm 2$
- The nature of roots of $x^2+x+1=0$ is:
 - Real and equal
 - Real and distinct
 - Non-real complex
 - Rational

MARK YOUR ANSWERS WITH PEN ONLY. Time Taken in Minutes

1	A B C D	2	A B C D	3	A B C D	4	A B C D	5	A B C D
6	A B C D	7	A B C D	8	A B C D	9	A B C D	10	A B C D

CONCEPT 1.3

Common root:

The equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ where $a_1b_2 - a_2b_1 \neq 0$, $a_1, a_2 \neq 0$ have a common root if and only if

$$(c_1a_2 - c_2a_1)^2 = (a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1) \text{ and the common root is}$$

$$\frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1} \text{. (or) } \frac{b_1c_2 - b_2c_1}{c_1a_2 - c_2a_1}$$

Ex: If $x^2 + 4ax + 3 = 0$ and $2x^2 + 3ax - 9 = 0$ have a common root then the value of a is

Sol: Condition for the common roots is

$$(c_1a_2 - c_2a_1)^2 = (a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1) \Rightarrow (6+9)^2 = (3a-8a)(-36a-9a) \Rightarrow a = \pm 1$$

Note:

If $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have the same roots then $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Properties of roots of the quadratic equation: .

$ax^2 + bx + c = 0$: If a and c are of the same sign then $\frac{c}{a}$ is +ve and hence roots have same signs

- If a and c are of the opposite signs then $\frac{c}{a}$ is -ve and hence roots have opposite sign
- If $a=c$ then the roots are reciprocal to each other.
- If both the roots are -ve then a,b,c will have the same sign
- If both roots are +ve then a,c will have the same sign different from the sign of b
- If $a+b+c=0$ then the roots are 1 and $\frac{c}{a}$
- If $a+c=b$ then the roots are -1 and $\frac{-c}{a}$
- If the roots are in the ratio m: n then $(m+n)^2 ac = mnb^2$ (or) $\frac{(m+n)^2}{mn} = \frac{b^2}{ac}$
- If one root is square of the other then $a^2c + c^2a = b(3ac - b^2)$
- If one root is equal to the n^{th} power of the other root
then $(ac^n)^{\frac{1}{n+1}} + (a^n c)^{\frac{1}{n+1}} + b = 0$.
- If roots differ by k then $b^2 - 4ac = a^2k^2$.

Ex: The roots of the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$

$(a \neq b \neq c \neq 0)$ are

Sol: $a(b-c) + b(c-a) + c(a-b) = 0$

\therefore the roots are $1, \frac{c(a-b)}{a(b-c)}$

Ex: If $p(q-r)x^2 + q(r-p)x + r(p-q) = 0$

$(p \neq q \neq r)$ has equal roots the value of $\frac{2}{q}$ in terms of p & q is

Sol: $p(q-r) + q(r-p) + r(p-q) = 0$

\therefore roots are $1, \frac{r(p-q)}{p(q-r)}$

\therefore roots are equal $\Rightarrow 1 = \frac{r(p-q)}{p(q-r)}$

$$p(q-r) = r(p-q) \Rightarrow pq - pr = rp - rq$$

$$pq + rq = 2pr \Rightarrow (p+r)q = 2pr = \frac{p+r}{pr} = \frac{2}{q}$$

Ex: The roots of $ax^2 + 3bx + c = 0$ if $3b = a + c$ are

Sol: $ax^2 + 3bx + c = 0$ and $3b = a + c$

$$ax^2 + (a+c)x + c = 0; \quad ax^2 + ax + cx + c = 0$$

$$ax(x+1) + c(x+1) = 0; \quad (x+1)(ax+c) = 0$$

$$x = -1; \quad x = \frac{-c}{a}$$

\therefore roots are $-1, \frac{-c}{a}$

Ex: If one root of the equation $ax^2 + bx + c = 0$ is double the other, then the relation between a, b, c is

Sol: Condition is $\frac{(m+n)^2}{mn} = \frac{b^2}{ac}$ given $m:n = 1:2$

$$\therefore \frac{(1+2)^2}{1 \times 2} = \frac{b^2}{ac} \Rightarrow 9ac = 2b^2$$

CLASSROOM DISCUSSION QUESTIONS

CDQ
1.3

- Two quadratic equations have a common root if:
 - Their coefficients are equal
 - Their discriminants are equal
 - They satisfy the common root condition
 - They have the same constant term
- If both roots of $ax^2 + bx + c = 0$ have the same sign, then:
 - a and c have the same sign
 - a and c have opposite signs
 - a and b have same sign
 - b and c have opposite signs
- If $a = c$ in $ax^2 + bx + c = 0$, then the roots are:
 - Equal
 - Reciprocals of each other
 - Imaginary
 - Opposite
- If both roots of $ax^2 + bx + c = 0$ are negative, then:
 - a, b, c have same sign
 - a and c have opposite signs
 - a and b have opposite signs
 - b and c have opposite signs
- If $a + b + c = 0$, then the roots of $ax^2 + bx + c = 0$ are:
 - 1 and -1
 - 1 and a/c
 - 1 and $-c/a$
 - 1 and c/a
- If $a + c = b$, then the roots of $ax^2 + bx + c = 0$ are:
 - -1 and $-c/a$
 - -1 and c/a
 - -1 and a/c
 - 1 and c/a
- If the roots are in the ratio $m : n$, then the condition is:
 - $b^2 = a c$
 - $b^2 = a c (m/n)$
 - $b^2 = a c (m + n)^2 / (mn)$
 - $b^2 = 4ac$
- If one root is square of the other, then the relation between a, b, c is:
 - $a^2 + c^2 = 2b^2$
 - $a^2 + b^2 = c^2$
 - $a^2 + c^2 + b^2 = 0$
 - $a^2 + c^2 = b^2 + 3ac$

MARK YOUR ANSWERS WITH PEN ONLY. Time Taken in Minutes

1	A B C D	2	A B C D	3	A B C D	4	A B C D	5	A B C D
6	A B C D	7	A B C D	8	A B C D	9	A B C D	10	A B C D

CONCEPT 1.4

Transformed Equations:

Let α, β be the roots of $f(x) = ax^2 + bx + c = 0$ then

S.No	New Roots	Corresponding Quadratic Equation
1	$-\alpha, -\beta$	$f(-x) = 0$
2	$\frac{1}{\alpha}, \frac{1}{\beta}$	$f\left(\frac{1}{x}\right) = 0$
3	$k\alpha, k\beta (k \neq 0)$	$f\left(\frac{x}{k}\right) = 0$
4	$\frac{\alpha}{k}, \frac{\beta}{k} (k \neq 0)$	$f(kx) = 0$
5	$\alpha + k, \beta + k$	$f(x - k) = 0$
6	α^2, β^2	$f(\sqrt{x}) = 0$
7	α^3, β^3	$f(\sqrt[3]{x}) = 0$
8	$\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\beta}$	$f\left(\frac{x}{1-x}\right) = 0$

Ex: If α, β are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $2 + \alpha$ and $2 + \beta$ is

Sol: $f(x - 2) = 0 \Rightarrow a(x - 2)^2 + b(x - 2) + c = 0$
 $\Rightarrow ax^2 + x(b - 4a) + 4a - 2b + c = 0$

Ex: If each root of the equation $x^2 + 11x + 13 = 0$ is diminished by 4, then the transformed equation is

Sol: $f(x + 4) = 0 \Rightarrow (x + 4)^2 + 11(x + 4) + 13 = 0 \Rightarrow x^2 + 19x + 73 = 0$

Ex: If α, β are the roots of $4x^2 + 7x + 2 = 0$, then the equation whose roots are α^2, β^2 is

Sol: $f(x) = 4x^2 + 7x + 2 = 0$

The required equation is $f(\sqrt{x}) = 0$.

$$\begin{aligned} &\Rightarrow 4(\sqrt{x})^2 + 7\sqrt{x} + 2 = 0 \Rightarrow 4x + 2 = -7\sqrt{x} \\ &\Rightarrow (4x + 2)^2 = (-7\sqrt{x})^2 \\ &\Rightarrow 16x^2 - 33x + 4 = 0 \end{aligned}$$

Quadratic Expressions

- **Signs of 'a' and $ax^2 + bx + c$:** If the equation $ax^2 + bx + c = 0$ has non real roots ($\Delta < 0$) then 'a' and $ax^2 + bx + c$ will have same sign $\forall x \in R$.
- If the equation $ax^2 + bx + c = 0$ has equal roots then 'a' and $ax^2 + bx + c$ will have same sign $\forall x \in R - \left\{ \frac{-b}{2a} \right\}$.
- If the equation $ax^2 + bx + c = 0$ has real roots α and β ($\Delta > 0, \alpha < \beta$) then
 - $\alpha < x < \beta \Leftrightarrow a$ and $ax^2 + bx + c$ will have opposite sign.
 - $x < \alpha$ or $x > \beta \Leftrightarrow a$ and $ax^2 + bx + c$ will have same sign.

Maximum And Minimum Values:

$ax^2 + bx + c$; $a, b, c \in R$:

(i) If $a > 0$ then $f(x) = ax^2 + bx + c$ has absolute minimum at

$$x = -\frac{b}{2a} \text{ and the minimum value is } \frac{4ac - b^2}{4a}$$

(ii) If $a < 0$ then $f(x) = ax^2 + bx + c$ has absolute maximum at

$$x = -\frac{b}{2a} \text{ and the maximum value is } \frac{4ac - b^2}{4a}$$

(iii) If $f(x) = \frac{ax^2 + bx + c}{ax^2 - bx + c}$ (or) $f(x) = \frac{ax^2 - bx + c}{ax^2 + bx + c}$, ($b^2 - 4ac < 0$), then the minimum and maximum values of $f(x)$ are given by $f\left(\pm\sqrt{\frac{c}{a}}\right)$

Ex: The maximum or minimum values of $2x + 5 - 3x^2$ on R is

Sol: Given expression $2x + 5 - 3x^2$, $a = -3 < 0, b = 2, c = 5$
 \Rightarrow given expression has maximum value

$$\therefore \text{maximum value} = \frac{4ac - b^2}{4a} = \frac{4(-3)(5) - 4}{4(-3)} = \frac{16}{3}$$

Ex: Find the range the expression $\frac{x^2 - x + 1}{x^2 + x + 1}$, where $x \in R$.

Sol: Here $a=1, b=1, c=1$, minimum value = $f(1) = 1/3$

maximum value = $f(-1) = 3$

- If x is real then the maximum and minimum values of

$$\frac{(a+x)(b+x)}{c+x} \quad (x > -c, a > c, b > c) \text{ are } \left(\sqrt{a-c} - \sqrt{b-c}\right)^2 \text{ and } \left(\sqrt{a-c} + \sqrt{b-c}\right)^2$$

CLASSROOM DISCUSSION QUESTIONS

CDQ
1.4

- If a and b are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $-a$ and $-b$ is:
 - $f(x) = 0$
 - $f(-x) = 0$
 - $f(x + 1) = 0$
 - $f(1/x) = 0$
- If a and b are roots of $f(x) = 0$, then the equation whose roots are $1/a$ and $1/b$ is:
 - $f(-x) = 0$
 - $f(1/x) = 0$
 - $x^2f(1/x) = 0$
 - $xf(1/x) = 0$
- If a and b are the roots of $f(x) = 0$, then the equation whose roots are ka and kb is:
 - $f(kx) = 0$
 - $f(x/k) = 0$
 - $k^2f(x/k) = 0$
 - $f(x) = 0$
- If a and b are roots of $f(x) = 0$, then the equation whose roots are $a+k$ and $b+k$ is:
 - $f(x+k) = 0$
 - $f(x-k) = 0$
 - $f(kx) = 0$
 - $f(x/k) = 0$
- If each root of $x^2 + 11x + 13 = 0$ is diminished by 4, then the new equation is:
 - $x^2 + 19x - 76 = 0$
 - $x^2 - 18x + 73 = 0$
 - $x^2 + 19x + 73 = 0$
 - $x^2 - 5x + 49 = 0$
- If a and b are roots of $x^2 + 2x + 1 = 0$, then the equation whose roots are $a-3$ and $b-3$ is:
 - $x^2 + 8x + 16 = 0$
 - $x^2 + 4x + 4 = 0$
 - $x^2 + 6x + 9 = 0$
 - $x^2 + 2x + 1 = 0$
- If a and b are roots of $f(x) = 0$, then the equation whose roots are a^2 and b^2 is:
 - $f(x^2) = 0$
 - $f(\sqrt{x}) = 0$
 - $x^2 - (a^2 + b^2)x + (ab)^2 = 0$
 - $x^2 - 2x + 1 = 0$
- If the roots of $x^2 - 2x + 3 = 0$ are increased by 1, then the new equation is:
 - $x^2 - 4x + 5 = 0$
 - $x^2 - 3x + 4 = 0$
 - $x^2 - 2x + 3 = 0$
 - $x^2 - 4x + 6 = 0$

MARK YOUR ANSWERS WITH PEN ONLY. Time Taken in Minutes

1	A B C D	2	A B C D	3	A B C D	4	A B C D	5	A B C D
6	A B C D	7	A B C D	8	A B C D	9	A B C D	10	A B C D

1. If $a, b, c \in \mathbb{R}$ and $a \neq 0$, then the expression $ax^2 + bx + c$ is called a quadratic expression.
2. A real number a is said to be a zero of an expression $ax^2 + bx + c$, if $aa^2 + ba + c = 0$
3. The value of a variable x for which satisfies the given equation $ax^2 + bx + c = 0$ is called **root** or **solution** of the equation.
4. The roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.
5. If $ax^2 + bx + c = 0$ is a quadratic equation, then $b^2 - 4ac$ is called its discriminant.
6. If α, β are the roots of $ax^2 + bx + c = 0$, then $ax^2 + bx + c = a(x - \alpha)(x - \beta)$.
7. The quadratic equation having roots α, β is $(x - \alpha)(x - \beta) = 0$ or $x^2 - (\alpha + \beta)x + \alpha\beta = 0$.
8. If $f(x) = ax^2 + bx + c = 0$ is quadratic equation then whose roots are
 - Greater by k than those of $f(x) = 0$ is $f(x - k) = 0$
 - Smaller by k than those of $f(x) = 0$ is $f(x + k) = 0$
9. If the roots of $ax^2 + bx + c = 0$ are complex roots then for $x \in \mathbb{R}$, $ax^2 + bx + c$ and a have the same sign.
10. If the roots of $ax^2 + bx + c = 0$ are real and equal, then $\alpha = \frac{-b}{2a}$, for $\alpha \neq x \in \mathbb{R}$, $ax^2 + bx + c$ and 'a' have the same sign.
11. Let α, β be the real roots of $ax^2 + bx + c = 0$, $\alpha < \beta$, then
 - $x \in \mathbb{R}, \alpha < x < \beta \Rightarrow ax^2 + bx + c$ and 'a' have opposite signs.
 - $x \in \mathbb{R}, x < \alpha$ or $x > \beta \Rightarrow ax^2 + bx + c$ and 'a' have the same sign.
12. Let $f(x) = ax^2 + bx + c$ be a quadratic function.
 - If $a > 0$ then $f(x)$ has minimum value at $x = \frac{-b}{2a}$ and the minimum value $= \frac{4ac - b^2}{4a}$.
 - If $a < 0$ then $f(x)$ has maximum value at $x = \frac{-b}{2a}$ and the maximum value $= \frac{4ac - b^2}{4a}$.

ADVANCED WORKSHEET

LEVEL 1

Single Correct Answer Type (S.C.A.T)

- The nature of the roots of $x^2+x-1=0$ is:
 - Not real
 - Real and equal
 - Irrational and conjugate to each other
 - Rational and distinct
- If the product of the roots of $5x^2-4x+2+m(4x^2-2x-1)=0$ is 3, then $m = \underline{\hspace{2cm}}$.
 - 0
 - 1
 - 1
 - 2
- If $3 + 4i$ and $3 - 4i$ are the roots of $x^2+px+q=0$, then $(p, q) = \underline{\hspace{2cm}}$.
 - (6, 25)
 - (6, 1)
 - (-6, -7)
 - (-6, 25)
- Sum of the roots of a quadratic equation $2x^2+ax+5=0$ is $\frac{7}{2}$ then $a = \underline{\hspace{2cm}}$.
 - 5
 - 7

(C) 0 (D) 7

5. One root is six times the other for the equation $px^2-14x+8=0$, then $p = \underline{\hspace{2cm}}$.

(A) 1 (B) 2

(C) 3 (D) 4

6. The roots of the equation $a(b-c)x^2+b(c-a)x+c(a-b) = 0$ are equal, then a, b, c are in:

(A) A.P (B) G.P

(C) H.P (D) A.G.P

7. The difference between the roots of $ax^2+bx+c=0$ is:

(A) $\sqrt{b^2 - 4ac}$ (B) $\frac{\sqrt{b^2 - 4ac}}{4a}$ (C) $\frac{\sqrt{b^2 - 4ac}}{a}$ (D) $\frac{-b}{a}$

8. If P is the ratio of the roots of an equation $ax^2+bx+c=0$, then

$$\frac{(p+1)^2}{P} = \underline{\hspace{2cm}}$$
(A) $\frac{b}{ac}$ (B) $\frac{b^2}{ac}$

Quadratic Expressions

(C) $\frac{b}{a^2c^2}$ (D) $a^2b^2c^2$

9. If $x^2+bx+c=0$, $x^2+cx+b=0$ ($b \neq c$) have a common root then $b + c = \underline{\hspace{2cm}}$.

(A) 0
(B) 1
(C) -1
(D) 2

10. If $\sqrt{x+1} - \sqrt{x-1} = 1$, then $x = \underline{\hspace{2cm}}$.

(A) $\frac{7}{11}$
(B) $\frac{2}{3}$
(C) $\frac{5}{4}$
(D) $-\left(\frac{3}{2}\right)$

11. The equation $x - \frac{2}{x-1} = 1 - \frac{2}{x-1}$ has:

(A) No root
(B) One root
(C) Two roots
(D) Infinity

12. Find the value of λ for which the equation $\lambda x^2 + 2x + 1 = 0$ has real and distinct roots:

(A) All real values of $\lambda < 5$
(B) All real values of $\lambda > 1$
(C) All real values of $\lambda \geq 1$

(D) All real values of $\lambda < 1$

13. Find the value of k if the equation $3x^2 - 2x + k = 0$ and $6x^2 - 17x + 12 = 0$ have a common root?

(A) $\frac{9}{2}$ or $\frac{13}{5}$

(B) $\frac{-8}{3}$ or $\frac{-15}{4}$

(C) $\frac{-7}{2}$ or $\frac{5}{9}$

(D) $\frac{-9}{4}$ or $\frac{-13}{3}$

14. Find the Quadratic equation with rational coefficients which has $2 + \sqrt{3}$ and $2 - \sqrt{3}$ as roots?

(A) $x^2 - 4x + 1 = 0$

(B) $x^2 + 4x + 1 = 0$

(C) $x^2 - 5x + 4 = 0$

(D) $x^2 - 2\sqrt{3}x + 2\sqrt{3} = 0$

15. If each root of the equation $x^2 + 11x + 13 = 0$ is diminished by 4, then the transformed equation is:

(A) $x^2 + 19x - 76 = 0$

(B) $x^2 - 18x + 73 = 0$

(C) $x^2 + 19x + 73 = 0$

(D) $x^2 - 5x + 49 = 0$

16. Find the equation whose roots are 3 more than the roots of the equation $x^2 - 2x - 24 = 0$.

(A) $x^2 - 8x + 9 = 0$

(B) $x^2 - 8x - 9 = 0$

(C) $x^2 + 6x - 8 = 0$

(D) $x^2 - 6x + 8 = 0$

17. The equation whose roots are multiplied by 6 of those of $2x^2 + 3x + 5 = 0$ is:

(A) $x^2 - 9x + 90 = 0$

(B) $x^2 - 19x - 90 = 0$

(C) $x^2 + 9x + 90 = 0$

(D) $x^2 + 19x + 19 = 0$

18. State the sign of $x^2 - x + 1$:

(A) Positive $\forall x \in \mathbb{R}$

(B) Negative $\forall x \in \mathbb{R}$

(C) Positive for $x < 2$

(D) None

19. The roots of $ax^2 + 3bx + c = 0$ if $3b = a + c$ are:

(A) $-1, \frac{c}{a}$ (B) $1, \frac{c}{a}$

(C) $-1, \frac{-c}{a}$ (D) None

20. If one root of the equation $ax^2 + bx + c = 0$ is double the other, then the relation between a, b, c is:

(A) $2b^2 = 19ac$

(B) $2b^2 = 5ac$

(C) $b^2 = 9ac$

(D) $2b^2 = 9ac$

21. If '1' is one of the roots of $ax^2 + 3x + 5 = 0$ then the second root is:

(A) $5/8$ (B) $-5/8$

(C) $5/16$ (D) $-5/16$

22. The equation whose roots are $2\sqrt{3} - 5$ and $-2\sqrt{3} - 5$ is:

(A) $x^2 + 10x - 13 = 0$

(B) $x^2 - 10x + 13 = 0$

(C) $x^2 + 10x + 13 = 0$

(D) $x^2 - 10x - 13 = 0$

23. If α, β are roots of $ax^2 + bx + c = 0$ then the equation whose roots are $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ is:

(A) $acx^2 - (b^2 - 2ac)x + ac = 0$

(B) $a^3x^2 + (b^3 - 3abc)x + c^3 = 0$

(C) $x^2 - 2qx + (q^2 - p^2) = 0$

Quadratic Expressions

(D) $x^2 + 2qx + (q^2 + p^2) = 0$

24. If α, β are the roots of the equation $ax^2 + bx + c = 0$, then the quadratic equation whose roots are $\alpha + \beta, \alpha\beta$ is:

(A) $a^2x^2 + a(b - (c)x + bc = 0$
 (B) $a^2x^2 + a(b - (c)x - bc = 0$
 (C) $a^2x^2 + (b - (c)x + bc = 0$
 (D) $a^2x^2 - (b + (c)x - bc = 0$

25. If α, β are the roots of $2x^2 + x + 3 = 0$, then the quadratic equation whose roots are $\alpha - 1, \beta - 1$ is:

(A) $2x^2 - x + 3 = 0$
 (B) $3x^2 + x + 2 = 0$
 (C) $2x^2 + 5x + 3 = 0$
 (D) $2x^2 + 5x + 6 = 0$

26. The equation whose roots are greater by 1 than those of $2x^2 - 3x + 1 = 0$:

(A) $3x^2 - 5x - 2 = 0$
 (B) $2x^2 - 7x + 6 = 0$
 (C) $2x^2 + 5x + 7 = 0$
 (D) $3x^2 + 5x - 7 = 0$

27. If α, β are the roots of $3x^2 + x + 1 = 0$, then the quadratic equation whose roots are $3\alpha, 3\beta$ is:

(A) $27x^2 + 3x + 1 = 0$
 (B) $3x^2 - x + 1 = 0$
 (C) $x^2 + x + 3 = 0$

(D) None

28. The equation formed by decreasing each root of $ax^2 + bx + c = 0$ by 1 is $2x^2 + 8x + 2 = 0$, then:

(A) $a = -b$
 (B) $b = -c$
 (C) $c = -a$
 (D) $b = a + c$

29. If α, β are the roots of $x^2 + 5x - 4 = 0$, then the equation whose roots are $\frac{\alpha+2}{3}, \frac{\beta+2}{3}$ is:

(A) $9x^2 + 3x + 10 = 0$
 (B) $9x^2 - 3x - 10 = 0$
 (C) $9x^2 + 3x - 10 = 0$
 (D) $9x^2 - 3x + 10 = 0$

30. State the sign of $x^2 - 5x + 4$.

(A) Positive if $x < 1$ or $x > 4$
 (B) Positive if $x < -1$ or $x > 4$
 (C) Positive if $x < 4$ or $x > 1$
 (D) Positive if $x < -1$ or $x > 1$

31. For what values of x , $x^2 - 5x + 6$ is negative:

(A) $2 < x < 3$
 (B) $x < 2$ or $x > 3$
 (C) $x = 2, 3$

(D) (A) & (B)

32. The maximum or minimum value of $3x-7+5x^2$ is:

(A) minimum = $-34/5$
 (B) minimum = $-5/6$
 (C) maximum = $11/20$
 (D) None

33. The minimum value of $x^2-8x+17 \forall x \in \mathbb{R}$ is:

(A) 17
 (B) -1
 (C) 1
 (D) 2

34. If $2x-7-5x^2$ has maximum value at $x = a$, then the value of 'a' is:

(A) $-1/5$
 (B) $1/5$
 (C) $34/5$
 (D) $-34/5$

35. The maximum value of $c+2bx-x^2$ is:

(A) b^2c
 (B) $b^2 - c$
 (C) $c - b^2$
 (D) $b^2 + c$

36. The minimum value of the quadratic expression $x^2+2bx+c$ is:

(A) cb^2
 (B) c^2b
 (C) $c + b^2$
 (D) $c - b^2$

37. The extreme value of $15+4x-3x^2$ is:

(A) $\frac{49}{3}$ (B) $-\frac{49}{3}$
 (C) $\frac{47}{3}$ (D) $-\frac{47}{3}$

38. Find the maximum or minimum value of the Quadratic expression $3x^2+2x+7$:

(A) Maximum value $10/3$
 (B) Minimum value $-10/3$
 (C) Maximum value -10
 (D) Minimum value $20/3$

39. The value of an quadratic equation $8a-a^2-15$ is maximum:

(A) 6
 (B) 8
 (C) 2
 (D) 4

Quadratic Expressions

40. For what values of x , the expression $x^2 - 7x + 10$ is negative

- (A) $2 < x < 3$
- (B) $2 < x < 5$
- (C) $6 < x < 8$
- (D) $-1 < x < -2$

41. For what values of x , the expression $x^2 - 5x - 14$ is positive:

- (A) $x < -2$ or $x > 7$
- (B) $x < 2$ or $x > 1$
- (C) $x < 7$ and $x < -2$
- (D) None

42. Find the solution for $\frac{x^2}{2} = 5x - 17$, if $i^2 = -1$:

- (A) $5 \pm 8i$
- (B) $5 \pm 13i$
- (C) $5 \pm 3i$
- (D) $8 \pm 5i$

43. If each root of the equation $x^2 + 11x + 13 = 0$ is diminished by 4, then the transformed equation is:

- (A) $x^2 + 19x - 76 = 0$
- (B) $x^2 - 18x + 73 = 0$
- (C) $x^2 + 19x + 73 = 0$
- (D) $x^2 - 5x + 49 = 0$

44. Find the Quadratic equation, the sum of whose roots is 1 and the sum of the squares of roots is 13.

- (A) $x^2 - x - 6 = 0$
- (B) $x^2 + x - 6 = 0$
- (C) $x^2 - x + 6 = 0$
- (D) $-x^2 + x + 6 = 0$

45. Quadratic equation whose roots

are $\left(\frac{p-q}{p+q}\right)$, $-\left(\frac{p+q}{p-q}\right)$ is:

- (A) $(p^2 + q^2)x^2 + 4pqx - (p^2 - q^2) = 0$
- (B) $(p^2 - q^2)x^2 + 4pqx - (p^2 - q^2) = 0$
- (C) $(p^2 + q^2)x^2 - 4pqx + (p^2 - q^2) = 0$
- (D) None

LEVEL 2

Multi Correct Questions (M.C.Q.)

46. If $3^{2x^2 - 7x + 7} = 9$ then no. of real roots is:

- (A) 1
- (B) rational number
- (C) 4
- (D) composite number

47. If $x^2 - 2(1+3m)x + 7(3+2m) = 0$ has equal roots, then $m = \underline{\hspace{2cm}}$.

- (A) 2
- (B) -2
- (C) $\frac{-10}{9}$
- (D) $\frac{10}{9}$

48. If $x^2 - hx - 21 = 0$, $x^2 - 3hx + 35 = 0$, have a common root then $h = \underline{\hspace{2cm}}$.

(A) -2 (B) 2
(C) 4 (D) -4

49. α, β are roots of $f(x) = ax^2 + bx + c = 0$. Quadratic equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ is:

(A) $f\left(\frac{1}{x}\right) = 0$
(B) $f(-x) = 0$
(C) $cx^2 + bx + a = 0$
(D) $ax^2 - bx + c = 0$

50. State the sign of $x^2 - 5x - 14$:

(A) Positive if $x < 2$ or $x > 7$
(B) Positive if $x < -2$ or $x > 7$
(C) Negative if $-2 < x < 7$
(D) Zero if $x = -2$ or 7

51. The expression $2x^2 + 4x + 7$ has minimum value m at $x = \alpha$, then

(A) $\alpha = 1$ (B) $\alpha = -1$
(C) $m = -5$ (D) $m = 5$

52. The expression $(x-a)(b-x)$ has

(A) maximum value at $x = \frac{a+b}{2}$
(B) minimum value at $x = \frac{a+b}{2}$
(C) maximum value $= \frac{(a-b)^2}{4}$
(D) minimum value $= \frac{(a-b)^2}{4}$

53. You want to frame a collage of pictures with a 9-ft strip of wood. Then:

(A) length = 2.25 ft
(B) width = 2.25 ft
(C) $l.w = 2.25$ will help you maximize the area
(D) Area = 2.0625 sq.ft

54. If both roots of $k(6x^2+3) + rx + 2x^2 - 1 = 0$ and $6k(2x^2+1) + px + 4x^2 - 2 = 0$ are common. Then:

(A) $\frac{p}{r} = 2$
(B) $p = 2r$
(C) $p - 2r = 0$
(D) $p = r$

Comprehension Passage (C.P.T.)

PASSAGE - I

If α, β are the roots of $ax^2 + bx + c = 0$ then $\alpha + \beta = \frac{-b}{a}$, $\alpha\beta = \frac{c}{a}$.

55. If $\sin \theta, \cos \theta$ are the roots of the equation $ax^2 + bx + c = 0$, then:

(A) $a^2 - b^2 + 2ac = 0$
(B) $a^2 + b^2 + 2ac = 0$
(C) $a - b + 2ac = 0$
(D) $a + b + 2c = 0$

Quadratic Expressions

56. If α, β are the roots of $ax^2 - 2bx + c = 0$, then $\alpha^3\beta^3 + \alpha^2\beta^3 + \alpha^3\beta^2$ ____.

(A) $\frac{c^2}{a^3}(c + 2b)$ (B) $\frac{bc^3}{a^3}$
 (C) $\frac{c^2}{a^3}(c - 2b)$ (D) $\frac{c^2}{a^3}(2b - c)$

57. If α, β are the roots of $x^2 - 2x + 4 = 0$, then $\alpha^4 + \beta^4$ ____.

(A) -8 (B) -16
 (C) -4 (D) 8

PASSAGE - II

Let $f(x) = ax^2 + bx + c$ be a quadratic function.

i) If $a > 0$ then $f(x)$ has minimum value at

$$x = \frac{-b}{2a} \text{ and the maximum value} \\ = \frac{4ac - b^2}{4a}$$

ii) If $a < 0$ then $f(x)$ has maximum value at

$$x = \frac{-b}{2a} \text{ and the maximum value} \\ = \frac{4ac - b^2}{4a}$$

58. $x^2 - 2x + 10$ has minimum at $x =$ ____.

(A) 2 (B) -1
 (C) 1 (D) -2

59. $3x - 5x^2 + 12$ has maximum at $x = 3/10$ and maximum value = ____.

(A) $\frac{249}{20}$ (B) $-\frac{249}{5}$
 (C) $\frac{3}{10}$ (D) $-\frac{249}{20}$

60. The maximum or minimum value of $\left(x - \frac{5}{3}\right)^2 + \frac{7}{2}$ is:

(A) 1 (B) 7
 (C) 7/5 (D) 7/2

LEVEL **3**

Matrix Matching Type (M.M.T.)

I. α, β are roots of $f(x) = 4x^2 + x + 1 = 0$. Quadratic equation whose roots are

Column-I

61. $-\alpha, -\beta$

62. $\frac{1}{\alpha}, \frac{1}{\beta}$

63. $\alpha + 2, \beta + 2$

64. $3\alpha, 3\beta$

Column-II

(A) $4x^2 - 15x + 15 = 0$

(B) $4x^2 - x + 1 = 0$

(C) $4x^2 + 3x + 9 = 0$

(D) $16x^2 + 2x + 1 = 0$

(E) $x^2 + x + 4 = 0$

II. Column - I

65. The sign of $-6x^2+2x-3$
66. The sign of x^2+x+1 for $x \in \mathbb{R}$ is
67. The value of 'a' for which one root of the quadratic equation $(a^2-5a+3)x^2-(3a-1)x+2=0$ is twice as large as other is
68. $\tan 22^\circ$ and $\tan 23^\circ$ are roots of $x^2+ax+b=0$ then [if $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$]

Column - II

- (A) $>0 \forall x \in \mathbb{R}$
- (B) $\frac{2}{3}$
- (C) $<0 \forall x \in \mathbb{R}$
- (D) $a-b+1=0$
- (E) $a+b+1=0$

Assertion Reason Type (A.R.T.)

- (A) Both Assertion(A) and Reason(R) are correct and reason(R) is the correct explanation of assertion(A).
- (B) Both Assertion(A) and Reason(R) are correct but reason(R) is not the correct explanation of assertion(A).
- (C) Assertion(A) is correct but Reason(R) is incorrect.
- (D) Assertion(A) is incorrect but Reason(R) is correct.
69. **Assertion (A):** The quadratic expression $f(x) = -3x^2+6x+1$ has a maximum value.
- Reason (R):** A quadratic expression ax^2+bx+c has a maximum value if $a < 0$.

70. **Assertion (A):** The maximum value of the quadratic expression $f(x) = -2x^2+8x-5$ is 3.

Reason (R): For $f(x) = ax^2+bx+c$, the maximum or minimum value is given by $f\left(-\frac{b}{2a}\right)$.

Integer Type Questions (I.T.Q.)

71. If α, β are the roots of $x^2+3x-2=0$ and $\frac{\alpha+1}{\beta} + \frac{\beta+1}{\alpha} = -k$ then $k = \underline{\hspace{2cm}}$.
72. If the difference of the squares of the roots of the equation $x^2-6x+q=0$ is 24, then the value of q is $\underline{\hspace{2cm}}$.
73. If '3' is root of $x^2+kx-24=0$ and it is also root of $x^2-kx+6=0$ then $k = \underline{\hspace{2cm}}$.
74. If α and β are the roots of $x^2-2x+4=0$ and the value of $\alpha^6 + \beta^6$ is 2^m then $m = \underline{\hspace{2cm}}$.
75. If the maximum value of $\frac{1}{4x^2+2x+1}$ is $\frac{4}{p}$ then $p^2 = \underline{\hspace{2cm}}$.
76. If x be real, then the maximum value of $5+4x-4x^2$ will be equal to: **[MNR]**
 - (A) 5
 - (B) 6
 - (C) 1
 - (D) 2

Quadratic Expressions

77. If x is real, then the maximum and minimum values of the

expression $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ will be:

[IIT]

(A) 2, 1

(B) 5, $\frac{1}{5}$

(C) 7, $\frac{1}{7}$

(D) None

Previous Question (P.Q.)

78. If x is real, then the value of $x^2 - 6x + 13$ will not be less than:

[RPET]

(A) 4

(B) 6

(C) 7

(D) 8

79. If both the roots of $k(6x^2 + 3) + rx + 2x^2 - 1 = 0$ and $6k(2x^2 + 1) + px + 4x^2 - 2 = 0$ are common, then $2r - p$ is equal to:

[MNR]

(A) -1

(B) 0

(C) 1

(D) 2

80. If a root of the equations $x^2 + px + q = 0$ and $x^2 + \alpha x + \beta = 0$ is common, then its value will be (where $p \neq \alpha$ and $q \neq \beta$):

[iit ; rpets]

(A) $\frac{q - \beta}{\alpha - p}$

(B) $\frac{q - \beta}{\alpha + p}$

(C) $\frac{q - \beta}{\alpha - p}$ or $\frac{p\beta - \alpha q}{q - \beta}$

(D) $\frac{p\beta - \alpha q}{q - \beta}$

81. If $x^2 - 3x + 2$ be a factor of $x^4 - px^2 + q$, then $(p, q) = \underline{\hspace{2cm}}$.

[IIT ; MP PET ; Pb. CET]

(A) (3, 4) (B) (4, 5)

(C) (4, 3) (D) (5, 4)

82. If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then:

[iit ; mp pet]

(A) $a < 2$ (B) $2 \leq a \leq 3$

(C) $3 \leq a \leq 4$ (D) $a > 4$

83. If x be real, the least value of $x^2 - 6x + 10$ is:

[Kurukshestra CEE]

(A) 1 (B) 2

(C) 3 (D) 10